

In partnership with

Standard-of-Care Tissue Profiling

Targeted panel for swift results

Standard40 Tissue NGS (Lung, Colon And Solid Tumors) is a next-generation sequencing (NGS) test identifying targeted somatic genomic alterations in 40 genes using DNA and RNA isolated from tumor tissue with results in up to 7 working days.

This aids in identification of multiple disease alterations for which FDA/HSA approved and CDL-covered treatments are available, with support for identification of available clinical trials.

The test covers all actionable targets for lung (9 guideline-recommended targets) and colon (NRAS, KRAS, BRAF, ERBB2, NTRK).

Targets list

Genes

AKT1	CDKN2A #	FGFR1	GNAQ	KIT	MTOR	PIK3CA #	SMO
ALK #	CTNNB1	FGFR2	GNAS	KRAS #	NRAS	PTEN #	TP53
AR #	EGFR #	FGFR3	HRAS	MAP2K1	NTRK1	RAF1	
ARAF	ERBB2 #	FLT3	IDH1	MAP2K2	NTRK3	RET	
BRAF	ESR1	GNA11	IDH2	MET #	PDGFRA	ROS1	

^{#:} Includes detection of gene copy number changes.

Fusions & Splice variants

ALK	EGFR	FGFR1	FGFR3	NRG1	NTRK2	NUTM1	ROS1
BRAF	ESR1	FGFR2	MET	NTRK1	NTRK3	RET	

Test Specifications¹

Methodology

Biomarkers analyzed

Sample type

Turnaround time

Ultra-deep next-generation sequencing

SNVs, Indels, CNVs, Fusions & Splice variants

FFPE tumor tissue

Up to 7 working days

	Sensitivity	Specificity	
SNVs/Indels	98%	100%	
Fusions	91.25%	100%	

 Results tested at the stated mutant allele frequencies using reference standards, FFPE cell line samples, and FFPE clinical samples.

• Sensitivity and specificity reported for SNVs and Indels are at 5% VAF.

References: [1] Ng, CC-Y. et al. Front. Mol. Biosci. 2022. 9:963243.